Regiospecific Synthesis of Isoxazoles by the Reaction of α -Bromoenones with Hydroxylamine

By Choji Kashima*, Shun-ichi Shirai, Nobutoshi Yoshiwara, and Yoshimori Omote (Department of Chemistry, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki 305, Japan)

Summary In the reaction of α-bromoenones with hydroxylamine, the synthesis of isomeric isoxazoles could be controlled regiospecifically by changing the base

Previously we have shown that 3,5-disubstituted isoxazoles are useful synthons for the preparation of various enones ¹ Although the preparations of isoxazoles have been studied extensively, the regiospecific synthesis of either isomer of unsymmetrical 3,5-disubstituted isoxazoles, particularly starting from one compound, has not been reported. We have now investigated the regiospecific synthesis of isoxazoles from $\alpha\text{-bromoenones}$ and hydroxylamine hydrochloride

The α -bromoenones (1) were prepared by α -bromination of NN-disubstituted β -aminoenones², followed by reaction with Grignard reagents (Scheme) ³

Scheme. Reagents: i, Br₂ then Et₃N; ii, RMgI; iii, NH₂OH.HCl, base.

When a mixture of the bromobutenone (1a), hydroxylamine hydrochloride, and potassium carbonate in 95% ethanol was heated for 7 h, a mixture of 3-methyl-5-phenylisoxazole (2a) and 5-methyl-3-phenylisoxazole (3a) was obtained. The structure of (2a) was confirmed by its n.m.r. signals at δ 2·34 (s, 3H), and 6·35 (s, 1H), while that of (3a) was confirmed by its signal at δ 2·45 (d, J 1 Hz, 3H), together with that at δ 6·30 (q, J 1 Hz, 1H). Increasing the amount of potassium carbonate caused a decrease in the isomer ratio (2a): (3a) (Table 1). A change in the base from potassium carbonate to potassium hydrogen carbonate also caused a change in the isomer ratio.

In a further study, a mixture of 1 mol equiv. of hydroxylamine hydrochloride and 1.5 mol equiv. of potassium

ABLE	

	Mole ratio	Product ratio					
(1a)	:	NH ₂ OH·HCl	:	K_2CO_3	(2a)	:	(3a)
1	:	2	:	1.5	4	;	1
1	:	2	:	2	$2 \cdot 5$:	1
1	:	2	:	3	2	:	1
1	:	2	:	6	1.8	:	1

carbonate was stirred for 1 h, and then 1 mol equiv. of (1a) was added; the isoxazole (2a) was obtained regio-specifically. However, when 2 mol. equiv. of sodium ethoxide was used as the base under similar conditions, the isomeric isoxazole (3a) was obtained regiospecifically. Similarly, 3-ethyl- (2b), 3-propyl- (2c), and 3-isopropyl-5-phenylisoxazoles (2d) and their isomers (3b), (3c), and (3d) could be synthesized regiospecifically (Table 2).

TABLE 2

	Base				
	K ₂ CO ₃ in 95% EtOH % Yield of (2) ^a	NaOEt in abs. EtOH % Yield of (3)b			
а	49	33			
b	33	30			
c	33	25			
d	30	25			

a (3) was not formed. b (2) was not formed.

Thus, the regiospecific synthesis of isoxazole isomers from one starting substance could be accomplished by using α -bromoenones and hydroxylamine in the presence of potassium carbonate or sodium ethoxide.

(Received, 31st March 1980; Com. 341.)

- ¹ C. Kashima, Heterocycles, 1979, 12, 1343.
- ² U. Lienhard, H. P. Fahrni, and M. Neuenschwander, Helv. Chim. Acta, 1978, 61, 1609.
- ³ C. Kashima and Y. Yamamoto, Bull. Chem Soc. Jpn., 1979, 52, 1735.